Publications

2018
Wang S, Herzog ED, Kiss IZ, Schwartz WJ, Bloch G, Sebek M, Granados-Fuentes D, Wang L, Li J-S. Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks. Proceedings of the National Academy of Sciences [Internet]. 2018. Publisher's VersionAbstract
Inferring connections forms a critical step toward understanding large and diverse complex networks. To date, reliable and efficient methods for the reconstruction of network topology from measurement data remain a challenge due to the high complexity and nonlinearity of the system dynamics. These obstacles also form a bottleneck for analyzing and controlling the dynamic structures (e.g., synchrony) and collective behavior in such complex networks. The novel contribution of this work is to develop a unified data-driven approach to reliably and efficiently reveal the dynamic topology of complex networks in different scales—from cells to societies. The developed technique provides guidelines for the refinement of experimental designs toward a comprehensive understanding of complex heterogeneous networks.Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network topology remain a challenge due to the tremendous scale of emerging systems (e.g., brain and social networks) and the inherent nonlinearity within and between individual units. We develop a unified, data-driven approach to efficiently infer connections of networks (ICON). We apply ICON to determine topology of networks of oscillators with different periodicities, degree nodes, coupling functions, and time scales, arising in silico, and in electrochemistry, neuronal networks, and groups of mice. This method enables the formulation of these large-scale, nonlinear estimation problems as a linear inverse problem that can be solved using parallel computing. Working with data from networks, ICON is robust and versatile enough to reliably reveal full and partial resonance among fast chemical oscillators, coherent circadian rhythms among hundreds of cells, and functional connectivity mediating social synchronization of circadian rhythmicity among mice over weeks.
Yirmiya K, Segal NL, Bloch G, Knafo‐Noam A. Prosocial and self‐interested intra‐twin pair behavior in monozygotic and dizygotic twins in the early to middle childhood transition. Developmental Science [Internet]. 2018;21 (6) :e12665. Publisher's VersionAbstract

Abstract Several related and complementary theoretical frameworks have been proposed to explain the existence of prosocial behavior, despite its potential fitness cost to the individual. These include kin selection theory, proposing that organisms have a propensity to help those to whom they are genetically related, and reciprocity, referring to the benefit of being prosocial, depending on past and future mutual interactions. A useful paradigm to examine prosociality is to compare mean levels of this behavior between monozygotic (MZ) and dizygotic (DZ) twins. Here, we examined the performance of 883 6.5‐year‐old twins (139 MZ and 302 DZ same‐sex 6.5‐year‐old full twin pairs) in the Differential Productivity Task. In this task, the twins’ behaviors were observed under two conditions: working for themselves vs. working for their co‐twin. There were no significant differences between the performances of MZ and DZ twins in the prosocial condition of the task. Correlations within the twin dyads were significantly higher in MZ than DZ twins in the self‐interested condition. However, similar MZ and DZ correlations were found in the prosocial condition, supporting the role of reciprocity in twins’ prosociality towards each other.

Nakayama S, Diner D, Holland JG, Bloch G, Porfiri M, Nov O. The Influence of Social Information and Self-expertise on Emergent Task Allocation in Virtual Groups. Frontiers in Ecology and Evolution [Internet]. 2018;6 :16. Publisher's VersionAbstract
Dynamic group coordination facilitates adaptive division of labor in response to group-level changes. Yet, little is known about how it can be operationalized in online collaborations among individuals with limited information about each other. We hypothesized that simple social information about the task distribution of others can elicit emergent task allocation. We conducted an online experiment where participants analyze images of a polluted canal by freely switching between two tasks: creating keyword-based tags for images and categorizing existing tags. During the task execution, we presented experimentally manipulated information about the contrasting group-level task distributions. Participants did not change the effort allocation between the tasks when they were notified that the group deficits workers in the task they intrinsically prefer. By contrast, they allocated more effort to the less preferred task than they would intrinsically do when their intrinsic effort allocation counterbalances the current distribution of workers in the group. Such behavioral changes were observed more strongly among those with higher skills in the less preferred task. Our results demonstrate the possibility of optimizing group coordination through design interventions at the individual level that lead to spontaneous adaption of division of labor at the group level. When participants were provided information about the group-level task distribution, they tend to allocate more effort to the task against their intrinsic preference.
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biology [Internet]. 2018;8 (1). Publisher's VersionAbstract

Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera. We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.

openbiology18.pdf
2017
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philosophical Transactions of the Royal Society B [Internet]. 2017;20160246. Publisher's VersionAbstract

Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but diferent disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of ‘chronotype’, i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.
This article is part of the themed issue ‘Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.

helm_etal_2017.pdf
Nagari M, Brenner Y, Bloch G. Capped-brood, which does not require feeding, is tended around-the-clock by nurse honeybee works. The Journal of Experimental Biology [Internet]. 2017;220 :4130-4140. Publisher's VersionAbstract

“Nurse” honeybees tend brood around-the-clock with attenuated or no circadian rhythms, but the brood signals inducing this behavior remain elusive.  We first tested the hypothesis that worker circadian rhythms are regulated by brood pheromones. We monitored locomotor activity of individually isolated nurse bees that were either exposed to various doses of larval extracts or synthetic brood ester pheromone (BEP). Bees orally treated with larvae extracts showed attenuated circadian rhythms in one of four tested trials; a similar but statistically non-significant trend was seen in two an additional trial. Nurse bees treated with synthetic BEP showed rhythm attenuation in one of three trials. Next, we tested the hypothesis that capped brood, which does not require feeding, is nevertheless tended around-the-clock by nurse. By combining a new protocol that enables brood care by individually isolated nurse bees, detailed behavioral observations, and automatic high resolution monitoring of locomotor activity, we found that isolated nurses tended capped brood around-the-clock with attenuated circadian rhythms. Bees individually isolated in similar cages but without brood, showed strong circadian rhythms in locomotor activity and rest. This study shows for the first time that the need to feed hungry larvae is not the only factor accounting for around-the-clock activity in nurse bees. Our results further suggest that the transition between activity with and without circadian rhythms is not a simple switch triggered by brood pheromones. Around-the-clock tending may enhance brood development and health in multiple ways that may include improved larval feeding, thermoregulation and hygienic behavior.

 

Bloch G, Bar-Shai N, Cytter Y, Green R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Phil. Trans. R. Soc. B [Internet]. 2017;20160256. Publisher's VersionAbstract

The interactions between flowering plants and insect pollinators shape eco-
logical communities and provide one of the best examples of coevolution.
Although these interactions have received much attention in both ecology
and evolution, their temporal aspects are little explored. Here we review
studies on the circadian organization of pollination-related traits in bees
and flowers. Research, mostly with the honeybee, Apis mellifera, has impli-
cated the circadian clock in key aspects of their foraging for flower
rewards. These include anticipation, timing of visits to flowers at specified
locations and time-compensated sun-compass orientation. Floral rhythms
in traits such as petal opening, scent release and reward availability also
show robust daily rhythms. However, in only few studies it was possible
to adequately determine whether these oscillations are driven by external
time givers such as light and temperature cycles, or endogenous circadian
clocks. The interplay between the timing of flowers and pollinators rhythms
may be ecologically significant. Circadian regulation of pollination-related
traits in only few species may influence the entire pollination network and
thus affect community structure and local biodiversity. We speculate that
these intricate chronobiological interactions may be vulnerable to anthropo-
genic effects such as the introduction of alien invasive species, pesticides or
environmental pollutants Q1 .
This article is part of the themed issue ‘Wild clocks: integrating chrono-
biology and ecology to understand timekeeping in free-living animals’.

timeishoney17.pdf
Nagari M, Szyszka P, Galizia G, Bloch G. Task-related phasing of circadian rhythms in antennal responsiveness to general odorants and pheromones in honeybees. Journal of Biological Rhythms [Internet]. 2017;1 (1) :11. Publisher's VersionAbstract

 

The insect antennae receive olfactory information from the environment. In some insects it was shown that the antennal responsiveness is dynamically regulated by circadian clocks. However, it is unknown how general this phenomenon is and what functions it serves. Circadian regulation in honeybee workers is particularly interesting in this regard because they show natural task-related chronobiological plasticity. Forager bees show strong circadian rhythms in behavior and brain gene expression, whereas nurse bees tend brood around-the-clock and have attenuated circadian rhythms in activity and whole brain gene expression. Here we tested the hypothesis that there is task-related plasticity in circadian rhythms of antennal responsiveness to odorants in worker honeybees. We used electroantennogram (EAG) to measure the antennal responsiveness of nurses and foragers to general odorants and pheromones around the day. The capacity to track 10 Hz odorant pulses varied with time-of-day for both task-groups, but with different phases. The antennal pulse-tracking capacity was higher during the subjective day for the day-active foragers whereas it was better during the night for around-the-clock active nurses. The task-related phases of pulse-tracking rhythms were similar for all the tested stimuli. We also found evidence for circadian rhythms in the EAG response magnitude of foragers, but not of nurses. To the best of our knowledge, these results provide the first evidence for circadian regulation of antennal olfactory responsiveness and odorant pulse tracking capacity in bees, or any other hymenopteran insect. Importantly, our study shows for the first time that the circadian phase of olfactory responsiveness may be socially regulated.

 

eag_pdf.pdf
Fuchikawa T, Beer K, Linke-Winnebeck C, Ben-David R, Kotowoy A, Tsang VWK, Warman GR, Winnebeck EC, Helfrich-Förster C, Bloch G. Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biology [Internet]. 2017;7. Publisher's VersionAbstract
Internal clocks driving rhythms of about a day (circadian) are ubiquitous in animals, allowing them to anticipate environmental changes. Genetic or environmental disturbances to circadian clocks or the rhythms they produce are commonly associated with illness, compromised performance or reduced survival. Nevertheless, some animals including Arctic mammals, open sea fish and social insects such as honeybees are active around-the-clock with no apparent ill effects. The mechanisms allowing this remarkable natural plasticity are unknown. We generated and validated a new and specific antibody against the clock protein PERIOD of the honeybee Apis mellifera (amPER) and used it to characterize the circadian network in the honeybee brain. We found many similarities to Drosophila melanogaster and other insects, suggesting common anatomical organization principles in the insect clock that have not been appreciated before. Time course analyses revealed strong daily oscillations in amPER levels in foragers, which show circadian rhythms, and also in nurses that do not, although the latter have attenuated oscillations in brain mRNA clock gene levels. The oscillations in nurses show that activity can be uncoupled from the circadian network and support the hypothesis that a ticking circadian clock is essential even in around-the-clock active animals in a constant physical environment.
Hamilton AR, Shpigler HY, Bloch G, Wheeler D, Robinson GE. Endocrine influences on insect societies. In: Hormones, Brain and Behavior. Vol. 2. 3rd ed. Oxford: Academic Press ; 2017. pp. 421-451. Publisher's VersionAbstract

 

Chapter Outline

30.1 Introduction

30.2 Overview of Division of Labor in Insect Societies

                30.2.1 Division of Labor for Reproduction

                30.2.2 Division of Labor among Workers

                30.2.3 Primitive and Advanced Eusociality

30.3 Insect Hormones That Influence Division of Labor

30.4 Endocrine Signaling in Reproductive Division of Labor

                30.4.1 JH and Reproductive Division of Labor

                30.4.2 Ecdysone and Reproductive Division of Labor

                30.4.3 Nutrition and Metabolic Factors Influencing Reproductive Division of Labor

                30.4.4 Biogenic Amines and Reproductive Division of Labor

30.5 Endocrine Influences on Division of Labor Among Workers: Behavioral Maturation

                30.5.1 Juvenile Hormone and Behavioral Maturation

                30.5.2 Ecdysone and Behavioral Maturation

                30.5.3 Nutrition and Metabolic Factors Influencing Behavioral Maturation

                30.5.4 Biogenic Amines and Behavioral Maturation

30.6 Endocrine Influences on Division of Labor Among Workers: Morphologically Distinct Castes

                30.6.1 Juvenile Hormone and Worker Caste Differentiation  

30.7 The Transcriptomic Architecture Linking Endocrine Signaling and Behavioral State

30.8 Evolutionary Perspectives

                30.8.1 Endocrine-Related Signatures of Selection

                30.8.2 Speculation on the Evolution of Division of Labor: A Neuroendocrine Perspective

                30.8.3 Level One: Incipient Societies and Endocrine-Mediated Social Inhibition among Adults

                30.8.4 Level Two: Pre-Adult Endocrine-Mediated Social Inhibition

30.8.5 Level Three: Pre-Adult, Endocrine-Mediated Social Inhibition Enhanced by Disruptive

Selection

                30.8.6 Level Four: Division of Labor among Adult Workers and its Regulation by Endocrine-

Mediated Social Inhibition

30.8.7 Level Five: Division of Labor among Morphologically Distinct Adult Workers and Its

Regulation by Pre-Adult, Endocrine-Mediated Social Inhibition

30.8.8 Concluding Remarks

 

2016
Fuchikawa T, Eban-Rothschild A, Nagari M, Shemesh Y, Bloch G. Potent social synchronization can override photic entrainment of circadian rhythms. NATURE COMMUNICATIONS. 2016;7.Abstract
Circadian rhythms in behaviour and physiology are important for animal health and survival. Studies with individually isolated animals in the laboratory have consistently emphasized the dominant role of light for the entrainment of circadian rhythms to relevant environmental cycles. Although in nature interactions with conspecifics are functionally significant, social signals are typically not considered important time-givers for the animal circadian clock. Our results challenge this view. By studying honeybees in an ecologically relevant context and using a massive data set, we demonstrate that social entrainment can be potent, may act without direct contact with other individuals and does not rely on gating the exposure to light. We show for the first time that social time cues stably entrain the clock, even in animals experiencing conflicting photic and social environmental cycles. These findings add to the growing appreciation for the importance of studying circadian rhythms in ecologically relevant contexts.
Shpigler HY, Siegel AJ, Huang ZY, Bloch G. No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity. HORMONES AND BEHAVIOR. 2016;85 :67-75.Abstract
A hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend (''nurse'') brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees. We studied the influence of juvenile hormone OH) on task performance in the bumblebee Bombus terrestris. We first used a radioimmunoassay to measure circulating JH titers in workers specializing in nursing and foraging activities. Next, we developed new protocols for manipulating JH titers by combining a size-adjusted topical treatment with the allatotoxin Precocene-I and replacement therapy with JH-III. Finally, we used this protocol to test the influence of JH on task performance. JH levels were either similar for nurses and foragers (three colonies), or higher in nurses (two colonies). Nurses had better developed ovaries and JH levels were typically positively correlated with ovarian state. Manipulation of JH titers influenced ovarian development and wax secretion, consistent with earlier allatectomy studies. These manipulations however, did not affect nursing or foraging activity, or the likelihood to specialize in nursing or foraging activity. These findings contrast with honeybees in which JH influences age -related division of labor but not adult female fertility. Thus, the evolution of complex societies in bees was associated with modifications in the way JH influences social behavior. (C) 2016 Elsevier Inc. All rights reserved.
2015
Søvik E, Bloch G, Ben-Shahar Y. Function and evolution of microRNAs in eusocial Hymenoptera. Frontiers in Genetics [Internet]. 2015;6 :193. Publisher's VersionAbstract
The emergence of eusociality (“true sociality”) in several insect lineages represents one of the most successful evolutionary adaptations in the animal kingdom in terms of species richness and global biomass. In contrast to solitary insects, eusocial insects evolved a set of unique behavioral and physiological traits such as reproductive division of labor and cooperative brood care, which likely played a major role in their ecological success. The molecular mechanisms that support the social regulation of behavior in eusocial insects, and their evolution, are mostly unknown. The recent whole-genome sequencing of several eusocial insect species set the stage for deciphering the molecular and genetic bases of eusociality, and the possible evolutionary modifications that led to it. Studies of mRNA expression patterns in the brains of diverse eusocial insect species have indicated that specific social behavioral states of individual workers and queens are often associated with particular tissue-specific transcriptional profiles. Here we discuss recent findings that highlight the role of non-coding microRNAs (miRNAs) in modulating traits associated with reproductive and behavioral divisions of labor in eusocial insects. We provide bioinformatic and phylogenetic data, which suggest that some Hymenoptera-specific miRNA may have contributed to the evolution of traits important for the evolution of eusociality in this group.
Eban-Rothschild A, Bloch G. The colony environment modulates sleep in honey bee workers. JOURNAL OF EXPERIMENTAL BIOLOGY. 2015;218 :404-411.Abstract
One of the most important and evolutionarily conserved roles of sleep is the processing and consolidation of information acquired during wakefulness. In both insects and mammals, environmental and social stimuli can modify sleep physiology and behavior, yet relatively little is known about the specifics of the wake experiences and their relative contribution to experience-dependent modulation of sleep. Honey bees provide an excellent model system in this regard because their behavioral repertoire is well characterized and the environment they experience during the day can be manipulated while keeping an ecologically and sociobiologically relevant context. We examined whether social experience modulates sleep in honey bees, and evaluated the relative contribution of different social signals. We exposed newly emerged bees to different components of their natural social environment and then monitored their sleep behavior in individual cages in a constant lab environment. We found that rich waking experience modulates subsequent sleep. Bees that experienced the colony environment for 1 or 2 days slept more than same-age sister bees that were caged individually or in small groups in the lab. Furthermore, bees placed in mesh-enclosures in the colony, that prevented direct contact with nestmates, slept similarly to bees freely moving in the colony. These results suggest that social signals that do not require direct or close distance interactions between bees are sufficiently rich to encompass almost the entire effect of the colony on sleep. Our findings provide a remarkable example of social experience- dependent modulation of an essential biological process.
Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P, Elsik CG, Gadau J, Grimmelikhuijzen CJP, Hasselmann M, Lozier JD, et al. The genomes of two key bumblebee species with primitive eusocial organization. GENOME BIOLOGY. 2015;16.Abstract
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
Pandey A, Bloch G. Juvenile hormone and ecdysteroids as major regulators of brain and behavior in bees. CURRENT OPINION IN INSECT SCIENCE. 2015;12 :26-37.Abstract
The genome sequencing of several bee species, and the development of functional genomics tools, paved the way for understanding the fascinating behaviors of bees in molecular terms. Here we review recent progress in research on the hormonal regulation of bee behavior, with emphasis on two key insect hormones: Juvenile hormones (JH) and ecdysteroids (Ec). We discuss recent progress in deciphering the molecular bases for JH regulation of gene expression in the nervous system and other tissues. The patterns of JH-dependent changes in gene expression show many similarities across tissues, which are associated with the effects of JH on worker task allocation. Ec, which have previously been studied mainly in the context of insect development, now appear to also play imortant roles in the regulation of many molecular processes in the brain that are asociated with bee behavior. Finally, we discuss the possibility that JH-signaling and Ec-signaling pathways interact to shape the complex behavioral repertoire of bees.
2014
Bloch G, Cohen M. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY. 2014;65 :1-8.Abstract
Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide. (C) 2014 Elsevier Ltd. All rights reserved.
Shpigler H, Amsalem E, Huang ZY, Cohen M, Siegel AJ, Hefetz A, Bloch G. Gonadotropic and Physiological Functions of Juvenile Hormone in Bumblebee (Bombus terrestris) Workers. PLOS ONE. 2014;9.Abstract
The evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the ``primitively eusocial'' bumblebee Bombus terrestris. Allatectomized worker bees showed remarkable reduction in ovarian development, egg laying, Vitellogenin and Kruppel homolog 1 fat body transcript levels, hemolymph Vitellogenin protein abundance, wax secretion, and egg-cell construction. These effects were reverted, at least partially, by treating allatectomized bees with JH-III, the natural JH of bees. Allatectomy also affected the amount of ester component in Dufour's gland secretion, which is thought to convey a social signal relating to worker fertility. These findings provide a strong support for the hypothesis that in contrast to honey bees, JH is a gonadotropin in bumblebees and lend credence to the hypothesis that the evolution of advanced eusociality in honey bees was associated with major modifications in JH signaling.
Woodard HS, Bloch GM, Band MR, Robinson GE. Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES. 2014;281.Abstract
Sibling care is a hallmark of social insects, but its evolution remains challenging to explain at the molecular level. The hypothesis that sibling care evolved from ancestral maternal care in primitively eusocial insects has been elaborated to involve heterochronic changes in gene expression. This elaboration leads to the prediction that workers in these species will show patterns of gene expression more similar to foundress queens, who express maternal care behaviour, than to established queens engaged solely in reproductive behaviour. We tested this idea in bumblebees (Bombus terrestris) using a microarray platform with approximately 4500 genes. Unlike the wasp Polistes metricus, in which support for the above prediction has been obtained, we found that patterns of brain gene expression in foundress and queen bumblebees were more similar to each other than to workers. Comparisons of differentially expressed genes derived from this study and gene lists from microarray studies in Polistes and the honeybee Apis mellifera yielded a shared set of genes involved in the regulation of related social behaviours across independent eusocial lineages. Together, these results suggest that multiple independent evolutions of eusociality in the insects might have involved different evolutionary routes, but nevertheless involved some similarities at the molecular level.
2013
Bloch G, Barnes BM, Gerkema MP, Helm B. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES. 2013;280.Abstract
Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.

Pages